On clique numbers of colored mixed graphs

Dipayan Chakraborty^a, Sandip Das^b, Soumen Nandi^c, Debdeep Roy^d, Sagnik Sen^a

^aIndian Institute of Technology Dharwad, India ^bIndian Statistical Institute, India ^cInstitute of Engineering and Management, India ^dESSSEC Business School of Cergy, France

(日) (同) (日) (日)

Discussion about...

- (m, n)-graphs
- o homomorphisms between (m, n)-graphs
- (*m*, *n*)-relative clique numbers
- (*m*, *n*)-absolute clique numbers
- (*m*, *n*)-chromatic numbers
- o parameters on different graph families

イロト 不得 ト イヨト イヨト

(m, n)-graphs: m types of arcs and n types of edges

н

イロン イ団 とく ヨン イヨン

(2,1)-Graphs

2

(m, n)-graphs: m types of arcs and n types of edges

イロト イヨト イヨト イヨト

(2, 1)-Graphs

(0, 1)-graphs = normal graphs

(m, n)-graphs: m types of arcs and n types of edges

イロン イ団 とく ヨン イヨン

(2,1)-Graphs

$$(0, 1)$$
-graphs = normal graphs
 $(1, 0)$ -graphs = oriented graphs

Dipayan Chakraborty^a, Sandip Das^b, Soumen Nandi^c

2

Homomorphism: adjacency, type and direction preserving vertex mapping

 $f: G \rightarrow H$. f(2) = 3', f(8) = 4' and f(i) = i' for all $i \neq 2, 8$

 $f: G \rightarrow H$. f(2) = 3', f(8) = 4' and f(i) = i' for all $i \neq 2, 8$

2

 $f: G \rightarrow H$. f(2) = 3', f(8) = 4' and f(i) = i' for all $i \neq 2, 8$

2

 $f: G \rightarrow H$. f(2) = 3', f(8) = 4' and f(i) = i' for all $i \neq 2, 8$

2

 $f: G \rightarrow H$. f(2) = 3', f(8) = 4' and f(i) = i' for all $i \neq 2, 8$

2

 $f: G \rightarrow H$. f(2) = 3', f(8) = 4' and f(i) = i' for all $i \neq 2, 8$

2

 $f: G \rightarrow H$. f(2) = 3', f(8) = 4' and f(i) = i' for all $i \neq 2, 8$

2

 $f: G \rightarrow H$. f(2) = 3', f(8) = 4' and f(i) = i' for all $i \neq 2, 8$

2

 $f: G \rightarrow H$. f(2) = 3', f(8) = 4' and f(i) = i' for all $i \neq 2, 8$

2

 $f: G \rightarrow H$. f(2) = 3', f(8) = 4' and f(i) = i' for all $i \neq 2, 8$

2

Homomorphism: adjacency, type and direction preserving vertex mapping

 $f: G \rightarrow H$. f(2) = 3', f(8) = 4' and f(i) = i' for all $i \neq 2, 8$

2

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

2

2

2

Dipayan Chakraborty^a, Sandip Das^b, Soumen Nandi^c

On clique numbers of colored mixed graphs

15 / 1

2

Dipayan Chakraborty^a, Sandip Das^b, Soumen Nandi^c

On clique numbers of colored mixed graphs

 $\chi_{m,n}(G)$: min $|V(H)|, \forall G \to G^*$

 $f: G \to H$. f(2) = 3', f(8) = 4' and f(i) = i' for all $i \neq 2, 8$

<ロ> <四> <四> <四> <三</p>

(m, n)-absolute clique: (m, n)-graph C such that $|f(V(C))| = |V(C)|, \forall f : C \to C^*$

 $f: G \to H$. f(2) = 3', f(8) = 4' and f(i) = i' for all $i \neq 2, 8$

イロト 不得 トイヨト イヨト

(m, n)-absolute clique: (m, n)-graph C such that $|f(V(C))| = |V(C)|, \forall f : C \to C^*$

Absolute clique= $\{1, 3, 4, 6\}$

H absolute clique

(m, n)-absolute clique: (m, n)-graph C such that $|f(V(C))| = |V(C)|, \forall f : C \to C^*$

Absolute clique= $\{1, 3, 4, 6\}$. $\omega_{a(m,n)}(G) = 4$

 $\omega_{a(m,n)}(H) = \chi_{m,n}(H) = 6$

Absolute clique = $\{1, 3, 4, 6\}$. $\omega_{a(m,n)}(G) = 4$

イロン イ団 とく ヨン イヨン

Absolute clique= $\{1, 3, 4, 6\}$. $\omega_{a(m,n)}(G) = 4$

 $\omega_{a(m,n)}(H) = \chi_{m,n}(H) = 6$

イロン イ団 とく ヨン イヨン

Absolute clique= $\{1, 3, 4, 6\}$. $\omega_{a(m,n)}(G) = 4$

Absolute clique= $\{1, 3, 4, 6\}$. $\omega_{a(m,n)}(G) = 4$

5

Absolute clique= $\{1, 3, 4, 6\}$. $\omega_{a(m,n)}(G) = 4$

Absolute clique= $\{1, 3, 4, 6\}$. $\omega_{a(m,n)}(G) = 4$

イロン イ団 とく ヨン イヨン

Absolute clique= $\{1, 3, 4, 6\}$. $\omega_{a(m,n)}(G) = 4$

イロン イ団 とく ヨン イヨン

Absolute clique= $\{1, 3, 4, 6\}$. $\omega_{a(m,n)}(G) = 4$

イロン イ団 とく ヨン イヨン

Dipayan Chakraborty^a, Sandip Das^b, Soumen Nandi^c On clique numbers of colored mixed graphs

Absolute clique = $\{1, 3, 4, 6\}$. $\omega_{a(m,n)}(G) = 4$

イロン イ団 とく ヨン イヨン

Absolute clique = $\{1, 3, 4, 6\}$. $\omega_{a(m,n)}(G) = 4$

イロン イ団 とく ヨン イヨン
(m, n)-absolute clique number $\omega_{a(m,n)}(G)$ max |V(C)| in G, C an absolute clique

Absolute clique = $\{1, 3, 4, 6\}$. $\omega_{a(m,n)}(G) = 4$

 $\omega_{a(m,n)}(H) = \chi_{m,n}(H) = 6$

(m, n)-absolute clique number $\omega_{a(m,n)}(G)$ max |V(C)| in G, C an absolute clique

Absolute clique = $\{1, 3, 4, 6\}$. $\omega_{a(m,n)}(G) = 4$

 $\omega_{a(m,n)}(H) = \chi_{m,n}(H) = 6$

(m, n)-absolute clique number $\omega_{a(m,n)}(G)$ max |V(C)| in G, C an absolute clique

Absolute clique = $\{1, 3, 4, 6\}$. $\omega_{a(m,n)}(G) = 4$

 $\omega_{a(m,n)}(H) = \chi_{m,n}(H) = 6$

(m, n)-absolute clique: (m, n)-graph C such that $|f(V(C))| = |V(C)|, \forall f : C \to G^*$

Absolute clique = $\{1, 3, 4, 6\}$. $\omega_{a(m,n)}(G) = 4$

イロト イヨト イヨト イヨト

Dipayan Chakraborty^a, Sandip Das^b, Soumen Nandi^c On clique numbers of colored mixed graphs

(m, n)-absolute clique: (m, n)-graph C such that $|f(V(C))| = |V(C)|, \forall f : \mathbf{G} \to G^*$

Absolute clique = $\{1, 3, 4, 6\}$. $\omega_{a(m,n)}(G) = 4$

 $\omega_{a(m,n)}(H) = \chi_{m,n}(H) = 6$

(m, n)-absolute clique: (m, n)-graph C such that $|f(V(C))| = |V(C)|, \forall f : \mathbf{G} \to G^*$

Absolute clique= $\{1, 3, 4, 6\}$. $\omega_{a(m,n)}(G) = 4$

 $\omega_{a(m,n)}(H) = \chi_{m,n}(H) = 6$

イロン イ団 とく ヨン イヨン

(m, n)-absolute clique: (m, n)-graph C such that $|f(V(C))| = |V(C)|, \forall f : \mathbf{G} \to G^*$

Absolute clique= $\{1, 3, 4, 6\}$. $\omega_{a(m,n)}(G) = 4$

 $\omega_{a(m,n)}(H) = \chi_{m,n}(H) = 6$

イロン イ団 とく ヨン イヨン

Relative Clique= $\{1, 3, 4, 5, 6\}$

H relative clique

イロト イヨト イヨト イヨト

Relative Clique= $\{1, 3, 4, 5, 6\}$

H relative clique

イロト イヨト イヨト イヨト

Relative Clique= $\{1, 3, 4, 5, 6\}$

H relative clique

イロト イヨト イヨト イヨト

Relative Clique= $\{1, 3, 4, 5, 6\}$

H relative clique

イロト イヨト イヨト イヨト

$$G: \omega_{r(m,n)}(G) = 5$$

イロン イ団 とく ヨン イヨン

 $G: \omega_{r(m,n)}(G) = 5$

 $G: \omega_{r(m,n)}(G) = 5$

$$G: \omega_{r(m,n)}(G) = 5$$

 $G: \omega_{r(m,n)}(G) = 5$

 $G: \omega_{r(m,n)}(G) = 5$

 $G: \omega_{r(m,n)}(G) = 5$

 $G: \omega_{r(m,n)}(G) = 5$

$$G: \omega_{r(m,n)}(G) =$$

 $G: \omega_{r(m,n)}(G) = 5$

$$G: \omega_{r(m,n)}(G) =$$

 $G: \omega_{r(m,n)}(G) = 5$

 $G: \omega_{r(m,n)}(G) = 5$

Parameter comparison

$$\omega_{r(m,n)}(H) = 6$$

$$\chi_{m,n}(H) = 6$$

ヘロト ヘロト ヘヨト ヘヨト

Dipayan Chakraborty^a, Sandip Das^b, Soumen Nandi^c On clique numbers of colored mixed graphs

2

$\omega_{a(m,n)}(G) \leq \omega_{r(m,n)}(G) \leq \chi_{m,n}(G)$

Dipayan Chakraborty^a, Sandip Das^b, Soumen Nandi^c On clique numbers of colored mixed graphs

э

Parameter for family \mathcal{F}

 $(-\pi)$

•
$$\chi_{m,n}(\mathcal{F}) = \max \chi_{m,n}(G), \ G \in \mathcal{F}$$

• $\omega_{a(m,n)}(\mathcal{F}) = \max \omega_{a(m,n)}(G), \ G \in \mathcal{F}$
• $\omega_{r(m,n)}(\mathcal{F}) = \max \omega_{r(m,n)}(G), \ G \in \mathcal{F}$

メロト メタトメミト メミト 二日

Bensmail, Duffy and Sen:

Theorem

Let \mathcal{O} denote the class of all outerplanar graphs. Then, for all $(m, n) \neq (0, 1)$, we have,

$$\omega_{a(m,n)}(\mathcal{O}) = \omega_{r(m,n)}(\mathcal{O}) = 3p + 1.$$

Theorem

Let \mathcal{P} denote the class of all planar graphs. Then, for all $(m, n) \neq (0, 1)$, we have,

$$3p^2 + p + 1 \leq \omega_{a(m,n)}(\mathcal{P}) \leq 9p^2 + 2p + 2.$$

(日) (四) (日) (日) (日)

Clique numbers for:

- Partial 2-trees of girth $g: \mathcal{T}_g^2$
- Planar graphs of girth $g: \mathcal{P}_g$
- Graphs of maximum degree Δ : \mathcal{G}_{Δ}

p = 2m + n $u(2, \Delta): \max |G|, diam(G) = 2 and \max deg(G) = \Delta$

イロト 不得 トイヨト イヨト

$$\mathcal{T}_g^2$$
: Partial 2-trees of girth g

•
$$\omega_{a(m,n)}(\mathcal{T}_{3}^{2}) = \omega_{r(m,n)}(\mathcal{T}_{3}^{2}) = p^{2} + p + 1.$$

• $\omega_{a(m,n)}(\mathcal{T}_{4}^{2}) = \omega_{r(m,n)}(\mathcal{T}_{4}^{2}) = p^{2} + 2.$
• $\omega_{a(m,n)}(\mathcal{T}_{5}^{2}) = \omega_{r(m,n)}(\mathcal{T}_{5}^{2}) = \max(p+1,5)$ for $(m, n) \neq (0, 2).$

<u></u>.

~

•
$$\omega_{a(0,2)}(\mathcal{T}_5^2) = 3 \text{ and } \omega_{r(0,2)}(\mathcal{T}_5^2) = 4.$$

•
$$\omega_{a(m,n)}(\mathcal{T}_g^2) = \omega_{r(m,n)}(\mathcal{T}_g^2) = p+1$$
 for all $g \geq 6$.

\mathcal{P}_g : Planar of girth g

イロト イロト イヨト イヨト 一日

$\mathcal{G}_\Delta:$ Graphs of maximum degree Δ

•
$$u(2,\Delta) = \omega_{a(m,n)}(\mathcal{G}_{\Delta}) \le \omega_{r(m,n)}(\mathcal{G}_{\Delta}) \le \Delta^2 + 1$$
 for all $\Delta < p$.

•
$$\omega_{a(m,n)}(\mathcal{G}_{\Delta}) \leq \omega_{r(m,n)}(\mathcal{G}_{\Delta}) \leq \Delta^2 + 1$$
 for all $\Delta = p$.

•
$$\omega_{a(m,n)}(\mathcal{G}_{\Delta}) \leq \omega_{r(m,n)}(\mathcal{G}_{\Delta}) \leq \lfloor \frac{p-1}{p} \Delta^2 \rfloor + \Delta + 1$$
 for all $\Delta > p$.

•
$$\omega_{a(1,0)}(\mathcal{G}_3)=\omega_{r(1,0)}(\mathcal{G}_3)=7$$
 (Das, Prabhu and Sen).

•
$$\omega_{a(0,n)}(\mathcal{G}_3) = \omega_{r(0,n)}(\mathcal{G}_3) = 8$$
 for $n = 2, 3$.

•
$$\omega_{a(m,n)}(\mathcal{G}_3) = \omega_{r(m,n)}(\mathcal{G}_3) = 10$$
 for $(m,n) = (1,1)$ and (m,n) such that $p \ge 4$.

$\omega_{a(m,n)}(\mathcal{T}_3^2) = \omega_{r(m,n)}(\mathcal{T}_3^2) = p^2 + p + 1.$

Dipayan Chakraborty^a, Sandip Das^b, Soumen Nandi^c On clique numbers of colored mixed graphs

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

\mathcal{T}_3^2 : Partial 2-trees Sketch of proof: The lower bound $(p^2 + p + 1)$

G: (0,3)-partial 2-tree. p = 3. $\omega_{a(0,3)}(G) = 3^2 + 3 + 1 = 13$

< □ > < □ > < □ > < □ > < □ >

\mathcal{T}_3^2 : Partial 2-trees Sketch of proof: The upper bound $(p^2 + p + 1)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

\mathcal{T}_3^2 : Partial 2-trees Sketch of proof: The upper bound $(p^2 + p + 1)$

< □ > < □ > < □ > < □ > < □ >

h

< □ > < □ > < □ > < □ > < □ >

 p_1 (middle right) = 2.

 p_1 (middle right) = 2. p_2 (middle left) = 2

 p_1 (middle right) = 2. p_2 (middle left) = 2 q_1 (right to h) = 2.

 p_1 (middle right) = 2. p_2 (middle left) = 2 q_1 (right to h) = 2. q_2 (left to h) = 1

 p_1 (middle right) = 2. p_2 (middle left) = 2 q_1 (right to h) = 2. q_2 (left to h) = 1

 $|R| \leq$

 p_1 (middle right) = 2. p_2 (middle left) = 2 q_1 (right to h) = 2. q_2 (left to h) = 1

 $|R| \leq p_1 p_2$

 p_1 (middle right) = 2. p_2 (middle left) = 2 q_1 (right to h) = 2. q_2 (left to h) = 1

$$|R|\leq p_1p_2+(p-p_1)q_1$$

 p_1 (middle right) = 2. p_2 (middle left) = 2 q_1 (right to h) = 2. q_2 (left to h) = 1

$$|R| \leq p_1 p_2 + (p-p_1) q_1 + (p-p_2) q_2$$

 p_1 (middle right) = 2. p_2 (middle left) = 2 q_1 (right to h) = 2. q_2 (left to h) = 1

$$|R| \le p_1 p_2 + (p - p_1)q_1 + (p - p_2)q_2 = (2 \times 2) + (1 \times 2) + (1 \times 1) \le 7 \le 13.$$

$\omega_{a(m,n)}(\mathcal{T}_4^2) = \omega_{r(m,n)}(\mathcal{T}_4^2) = p^2 + 2.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

\mathcal{T}_4^2 : Triangle-free Sketch of proof: $\omega_{r(m,n)}(\mathcal{T}_4^2) = p^2 + 2$

\mathcal{T}_4^2 : Triangle-free Sketch of proof: $\omega_{r(m,n)}(\mathcal{T}_4^2) = p^2 + 2$

\mathcal{T}_4^2 : Triangle-free Sketch of proof: $\omega_{r(m,n)}(\mathcal{T}_4^2) = p^2 + 2$

Sketch of proof:
$$\mathcal{T}_g^2$$
, $g \ge 5$ (higher girths)

$\omega_{a(m,n)}(\mathcal{T}_g^2) = \omega_{r(m,n)}(\mathcal{T}_g^2) = p+1$, for all $p \geq 4$

(日)

Sketch of proof: \mathcal{P}_g

$3p^2 + p + 1 \leq \omega_{a(m,n)}(\mathcal{P}_3) \leq \omega_{r(m,n)}(\mathcal{P}_3) \leq 42p^2 - 11.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

\mathcal{P}_3 : Planar graphs Sketch of proof: The lower bound $(3p^2 + p + 1)$

G: (0,2)-planar. p = 2. $\omega_{a(0,2)}(G) = 3 \times 2^2 + 2 + 1 = 15$

\mathcal{P}_3 : Planar graphs Sketch of proof: The upper bound (42 $p^2 - 13$)

\mathcal{P}_3 : Planar graphs Sketch of proof: The upper bound (42 $p^2 - 13$)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

\mathcal{P}_3 : Planar graphs Sketch of proof: The upper bound (42 p^2 – 13)

\mathcal{P}_3 : Planar graphs Sketch of proof: The upper bound (42 p^2 – 13)

\mathcal{P}_3 : Planar graphs Sketch of proof: The upper bound (42 $p^2 - 13$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

イロン イヨン イヨン イヨン 三日

|R| <

э

 $|R| \le 1 + 7$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $|R| \le 1 + 7 + 7 \times (6p^2 - 3)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $|R| \le 1 + 7 + 7 \times (6p^2 - 3) = 42p^2 - 13.$

(日) (四) (注) (注) (正)

Sketch of proof: \mathcal{P}_4

$p^2+2=\omega_{a(m,n)}(\mathcal{P}_4)\leq \omega_{r(m,n)}(\mathcal{P}_4)\leq 14p^2+1$

э

Use the same graph as for triangle-free partial 2-tree!

< □ > < □ > < □ > < □ > < □ >

 $|R| \le 1 + 7 + 7 \times (2p^2 - 1) = 14p^2 + 1.$

 $|R| \le 1 + 7 + 7 \times (2p^2 - 1) = 14p^2 + 1.$

 $|R| \leq$

Dipayan Chakraborty^a, Sandip Das^b, Soumen Nandi^c

 $|R| \le 1 + 7 + 7 \times (2p^2 - 1) = 14p^2 + 1.$

Sketch of proof: \mathcal{P}_g , $g \geq 5$ (higher girths)

$$\omega_{a(m,n)}(\mathcal{P}_g) = \omega_{r(m,n)}(\mathcal{P}_g) = p+1$$
 for $p \geq 5$

э

 \mathcal{P}_g , $g \geq 5$: Higher girths Sketch of proof: $\omega_{r(m,n)}(\mathcal{P}_g) = p + 1$

Same logic as for partial 2-trees of higher girths!