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Locating-dominating (LD) code – A practical example
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1←→ {2} = N(1) ∩ S
3←→ {2, 5, 7}= N(3) ∩ S
4←→ {2, 5} = N(4) ∩ S
6←→ {5} = N(6) ∩ S
8←→ {7} = N(8) ∩ S
9←→ {7, 10} = N(9) ∩ S

S has two properties:

1. Domination: “Well spread-out”
2. Separation (location):
N(u) ∩ S ̸= N(v) ∩ S, ∀u, v /∈ S
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Definitions (Neighbourhoods)

Let G = (V,E) be a graph...

Neighbourhoods

open: N(v) = {u ∈ V : uv ∈ E}. || closed: N [v] = N(v) ∪ {v}.

Twins

u, v ∈ V are called

{
open twins

closed twins

}
⇐⇒

{
N(u) = N(v)

N [u] = N [v]

}
.

Diamond
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Definitions (Domination)

Let G = (V,E) be a graph...

Dominating set [property: closed domination]

S ⊂ V such that N [v] ∩ S ̸= ∅ for all v ∈ V .

A dominating set always exists.

Open/total dominating set [property: open domination]

S ⊂ V such that N(v) ∩ S ̸= ∅ for all v ∈ V .

An open dominating set exists ⇐⇒ G is isolate-free.
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Definitions (Separation)

Let G = (V,E) be a graph...

Locating set [property: location]

S ⊂ V such that N(u) ∩ S ̸= N(v) ∩ S for all u, v ∈ V \ S.

Open separating set [property: open separation]

S ⊂ V such that N(u) ∩ S ̸= N(v) ∩ S for all distinct u, v ∈ V .

Open separating set exists ⇐⇒ G is open-twin free.

Closed separating set [property: closed separation]

S ⊂ V such that N [u] ∩ S ̸= N [v] ∩ S for all distinct u, v ∈ V .

Closed separating set exists ⇐⇒ G is closed-twin free.
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Definitions (Codes)

Let G = (V,E) be a graph...

Locating-dominating (LD) code [3] X=LD

S ⊂ V such that S has the following properties.

• domination : closed domination
• separation : location

LD code always exists.

X code

S ⊂ V such that S has the following properties.

• domination (X) : closed / open domination
• separation (X) : location / closed / open separation

[3] Slater, 1988
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Definitions (Codes)

Let G = (V,E) be a graph...

Locating total-dominating (LTD) code [4] X=LTD

S ⊂ V such that S has the following properties.

• domination : open domination
• separation : location

LTD code exists ⇐⇒ G is isolate-free.

[4] Haynes, Henning & Howard, 2006.

Dipayan Chakraborty (3rd Year PhD) (UCA)Identification Problems in graphs 9 / 24



X codes studied in literature.

Code name X dom(X) sep(X) γX(G)

Identifying ID CD CS γID(G)

Open-Separating Dominating OSD CD OS γOSD(G)

Locating- Dominating LD CD L γLD(G)

Differentiating
Total-Dominating

DTD OD CS γDTD(G)

Open-Locating Dominating OLD OD OS γOLD(G)

Locating Total-Dominating LTD OD L γLTD(G)

CD : closed domination
OD : open domination
CS : closed separation
OS : open separation
L : location
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Definitions

Let G = (V,E) be a graph...

X-number

γX(G) = min{|S| : S is an X-code of G}.

Domination number

γ(G) = min{|S| : S is a dominating set of G}.

Total-domination number

γt(G) = min{|S| : S is a total-dominating of G}.
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Basic properties of X codes

Let G = (V,E) be a graph...

A comparison

γX(G) ≥

{
γ(G), if domination (X)=CD

γt(G), if domination (X)=OD

G = G1 ⊔G2 ⊔ . . . ⊔Gk

γX(G) = γX(G1) + γX(G) . . .+ γX(Gk) except when X = OSD.

=⇒ enough to consider connected G whenever X ̸= OSD.
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Codes based on location: LD codes...

γLD(G) = n− 1, γ(G) = 1. n = 10, γLD(G) = 3 = ⌊log2 10⌋.
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Codes based on location: LD codes...

γLD(G) = n− 1, γ(G) = 1. n = 10, γLD(G) = 3 = ⌊log2 10⌋.

γLD(Pn) = ⌈ 25n⌉
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Codes based on location: LD codes...

γLD(G) = n− 1, γ(G) = 1. n = 10, γLD(G) = 3 = ⌊log2 10⌋.

Let G = (V,E) be a connected graph and of order ≥ 3.

LD code: S ⊂ V is a dominating set and a locating set.

• γ(G) ≤ γLD(G)
• ⌊log2 n⌋ ≤ γLD(G) ≤ n− 1 [3]

[3] Slater, 1988.
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Codes based on location: LTD codes...

γLTD(G) = n− 1, γ(G) = 1. n = 10, γLTD(G) = 3 = ⌊log2 10⌋.
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Codes based on location: LTD codes...

γLTD(G) = n− 1, γ(G) = 1. n = 10, γLTD(G) = 3 = ⌊log2 10⌋.

γLTD(Pn) = ⌊n2 ⌋+ ⌈
n
4 ⌉ − ⌊

n
4 ⌋
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Codes based on location: LTD codes...

γLTD(G) = n− 1, γ(G) = 1. n = 10, γLTD(G) = 3 = ⌊log2 10⌋.

Let G = (V,E) be a connected graph and of order ≥ 3.

LD code: S ⊂ V is a total-dominating set and a locating set.

• γt(G) ≤ γLTD(G)
• ⌊log2 n⌋ ≤ γLTD(G) ≤ n− 1 [5]

[5] Henning & Rad, 2012.
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Bounds on γLD(G) and γLTD(G)

LD code: S ⊂ V is a

• dominating set; and
• locating set

γ(G) ≤ γLD(G)

γ(G) ≤ n

2
([6])

γ(G) ≤ γLD(G) ≤ n

2
(conjecture [7]: for G twin-free)

[6] Ore, 1962.
[7] Garijo, González & Márques,
2014.

LTD code: S ⊂ V is a

• total-dominating set; and
• locating set

γt(G) ≤ γLTD(G)

γt(G) ≤ 2n

3
([8])

γt(G) ≤ γLTD(G) ≤ 2n

3
(conjecture [9]: for G twin-free)

[8] Cockayne, Dawes &
Hedetniemi, 1980.
[9] Foucaud & Henning, 2016.
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Conj: γLD(G) ≤ n
2 , G isolate- & twin-free, is true for:

• with no 4-cycles (as subgraphs)

Garijo, González
• with independence number ≥ n

2

& Márquez, 2014
• bipartite graph
• with vertex cover number ≤ n

2

• line graph
Foucaud & Henning, 2016• cubic graph (Conj: even with twins)

• subcubic graph (with deg 1 twin-free)
C., Lehtila & Hakanen,̸∼= K3,K4,K2,3,K3,3

2024+ [writing ongoing]• Corollary: cubic with twins

• split graph Foucaud, Henning, Löwen-
• co-bipartite stein & Sasse, 2016

• block graph
C., Foucaud, Parreau
& Wagler, 2023

Best general bound [Foucaud, Henning, Löwenstein & Sasse 2016]

For a twin-free and isolate-free graph, γLD(G) ≤ 2n
3 .
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Block graph

A graph whose every 2-connected component is a complete subgraph.

Block graph (altertnative definition)

A diamond-free chordal graph.

BLOCK

articulation vertices

ROOT

LEAF
BLOCK

NON-LEAF
BLOCK

non-articulation
vertices
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Theorem (C., Foucaud, Parreau & Wagler, 2023)

For G a twin-free and isolate-free block graph on n vertices,

γLD(G) ≤ n

2
.

Proof sketch.

Partition V into two parts A and B.
Both A and B are LD codes of G.
Either one of |A| or |B| ≤ 1

2n.
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Conj: γLTD(G) ≤ 2n
3 , G isolate- & twin-free, is true for:

• with no 4-cycles (as subgraphs)
Foucaud & Henning, 2016• line graph

• with γLD(G) ≤ n
2 and δ(G) ≥ 26

• claw-free cubic graph ̸∼= K4

Henning & Löwenstein,(It was shown γLTD(G) ≤ n
2 .

2012Conj: γLTD(G) ≤ n
2 for G cubic, n ≥ 8)

• split graph (γLTD(G) < 2n
3 )

C., Foucaud, Hakanen,
• co-bipartite graph (γLTD(G) ≤ n

2 )

Henning & Wagler, 2024+
• block graph, n ≥ 4
• subcubic graph ̸∼= K1,K2,K4,K1,3

• outerplanar graph

Best general bound [Foucaud & Henning, 2016]

For a twin-free and isolate-free graph, γLTD(G) ≤ 3n
4 .
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Theorem (C.,Foucaud, Hakanen, Henning & Wagler, 2024+)

For G a twin-free and isolate-free block graph on n vertices,

γLTD(G) ≤ 2n

3
.

Proof sketch (by induction on n).

r = 1

3p = 2

B2

B1

6

5

B3

F = B4

B5

4

B6

B7

uB1uB2

uB6

uB7

uB3

uF = uB4 uB5

vr = v1

vp = v2 v3

v4v5 v6
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Theorem (C.,Foucaud, Hakanen, Henning & Wagler, 2024+)

For G a twin-free and isolate-free block graph on n vertices,

γLTD(G) ≤ 2n

3
.

Proof sketch (by induction on n).

x and y are (closed) twins in G′.

y and x′′ are (open) twins in G′′.
No further twins.

xp

y

z

x′′
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Theorem (C.,Foucaud, Hakanen, Henning & Wagler, 2024+)

For G a connected subcubic graph on n vertices and ̸∼= K1,K2,K4,K1,3,

γLTD(G) ≤ 2n

3
.

Proof sketch

Proof by contradiction: assume G to be subcubic graph of smallest
order such that γLTD(G) > 2

3n.

δ(G) ≥ 2.
There is no (1, 3, 1)-sequence.
There is no (1, 2, 2)-sequence.
There is no (1, 2, 3, 1)-sequence.
There is no (1, 2, 3, 2, 1)-sequence.
There is no (1, 2, 3)-sequence.
There is no (1, 2)-sequence.
There is no (1, 3, 2)-sequence.
There is no (1, 3, 3, 1)-sequence.
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Theorem (C.,Foucaud, Hakanen, Henning & Wagler, 2024+)

For G a connected subcubic graph on n vertices and ̸∼= K1,K2,K4,K1,3,

γLTD(G) ≤ 2n

3
.

Proof sketch

G is triangle-free.
G is cubic.

There is no (2, 2, 2)-sequence.
There is no (2, 3, 2)-sequence.
There is no (2, 2, 3)-sequence.
There is no (2, 2)-sequence.
There is no (2, 3, 3)-sequence.

G′ = G− (3, 3, 3)-sequence.
G′ ̸∼= K1,K2,K4,K1,3.
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Theorem (C.,Foucaud, Hakanen, Henning & Wagler, 2024+)

For G a twin-free and isolate-free outerplanar graph on n vertices,

γLTD(G) ≤ 2n

3
.

Proof sketch
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Theorem (C.,Foucaud, Hakanen, Henning & Wagler, 2024+)

For G a twin-free and isolate-free outerplanar graph on n vertices,

γLTD(G) ≤ 2n

3
.

Proof sketch

vi0 = ci
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Possible future research ideas...

Prove the conjectures in general!

Improve the existing best bounds approximating the conjectured
bounds.

Characterize cubic/ block / split / etc. graphs whose LD-
LTD-numbers attain the conjectured bounds.
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Thank you.
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