Identification Problems in Graphs

Dipayan Chakraborty (3rd Year PhD)

Thesis director: Annegret WAGLER, Co-supervisor: Florent FOUCAUD, Mentor: Michael HENNING

Université Clermont-Auvergne, CNRS, Mines de Saint-Étienne, Clermont-Auvergne-INP, LIMOS, 63000 Clermont-Ferrand, France

University of Johannesburg, Department of Mathematics and Applied Mathematics, Auckland Park, 2006, South Africa

dipayan. chakraborty @uca. fr

1/24

Dipayan Chakraborty (3rd Year PhD) Identification Problems in graphs

Introduction to Identification problems

- Motivation
- Definitions
- Properties

- **2** LD and LTD codes
 - Bounds and existing research
 - Recent developments

Identification problems in graphs

Identification problems in graphs

•
$$1 \leftrightarrow \{2\} = N(1) \cap S$$

• $3 \leftrightarrow \{2, 5, 7\} = N(3) \cap S$
• $4 \leftrightarrow \{2, 5\} = N(4) \cap S$
• $6 \leftrightarrow \{5\} = N(6) \cap S$
• $8 \leftrightarrow \{7\} = N(8) \cap S$
• $9 \leftrightarrow \{7, 10\} = N(9) \cap S$

 $S = \{ \text{blue vertices} \}$

Definitions (Neighbourhoods)

Let G = (V, E) be a graph...

Neighbourhoods

open: $N(v) = \{u \in V : uv \in E\}.$

closed:
$$N[v] = N(v) \cup \{v\}$$

Twins

Definitions (Domination)

Let G = (V, E) be a graph...

Dominating set	[property:	closed domination]
$S \subset V$ such that $N[v] \cap S \neq \emptyset$ for all $v \in V$.		
A dominating set always exists.		

Open/total dominating se	С) pen,	/total	dominating	set
--------------------------	---	-----------	--------	------------	-----

[property: open domination]

 $S \subset V$ such that $N(v) \cap S \neq \emptyset$ for all $v \in V$.

An open dominating set exists $\iff G$ is isolate-free.

Definitions (Separation)

Let G = (V, E) be a graph...

Locating set

[property: *location*]

 $S \subset V$ such that $N(u) \cap S \neq N(v) \cap S$ for all $u, v \in V \setminus S$.

Open separating set

property: open separation

< 17 ▶

 $S \subset V$ such that $N(u) \cap S \neq N(v) \cap S$ for all distinct $u, v \in V$.

Open separating set exists $\iff G$ is open-twin free.

Closed separating set property: *closed separation* $S \subset V$ such that $N[u] \cap S \neq N[v] \cap S$ for all distinct $u, v \in V$. Closed separating set exists $\iff G$ is closed-twin free. < 注 → < 注 →

Definitions (Codes)

Let G = (V, E) be a graph...

Locating-dominating (LD) code [3]

 $S \subset V$ such that S has the following properties.

- domination : closed domination
- separation : location

LD code always exists.

[3] Slater, 1988

X=LD

Definitions (Codes)

Let G = (V, E) be a graph...

Locating-dominating (LD) code [3]

 $S \subset V$ such that S has the following properties.

- domination : closed domination
- separation : location

LD code always exists.

X code

 $S \subset V$ such that S has the following properties.

- domination (X) : closed / open domination
- separation (X) : location / closed / open separation

[3] Slater, 1988

《曰》《圖》 《臣》 《臣》

X=LD

Let G = (V, E) be a graph...

Locating total-dominating (LTD) code [4]

 $S \subset V$ such that S has the following properties.

- domination : open domination
- separation : location

LTD code exists \iff G is isolate-free.

[4] Haynes, Henning & Howard, 2006.

X=LTD

Code name	X	dom(X)	sep(X)	$\gamma^{\mathrm{X}}(\mathbf{G})$
Identifying	ID	CD	CS	$\gamma^{\mathrm{ID}}(G)$
Open-Separating Dominating	OSD	CD	OS	$\gamma^{\text{OSD}}(G)$
Locating- Dominating	LD	CD	L	$\gamma^{\mathrm{LD}}(G)$
Differentiating	מדת	OD	CS	$\alpha^{\mathrm{DTD}}(C)$
Total-Dominating			05	(G)
Open-Locating Dominating	OLD	OD	OS	$\gamma^{\text{OLD}}(G)$
Locating Total-Dominating	LTD	OD	L	$\gamma^{\text{LTD}}(G)$

- CD : closed domination
- OD : open domination
- CS : closed separation
- OS : open separation
- L : location

Let G = (V, E) be a graph...

X-number

$$\gamma^{\mathcal{X}}(G) = \min\{|S| : S \text{ is an X-code of } G\}.$$

Domination number

 $\gamma(G) = \min\{|S| : S \text{ is a dominating set of } G\}.$

Total-domination number

 $\gamma_t(G) = \min\{|S|: S \text{ is a total-dominating of } G\}.$

< 🗇 🕨

Basic properties of X codes

Let G = (V, E) be a graph...

A comparison

$$\gamma^{\mathbf{X}}(G) \ge \begin{cases} \gamma(G), & \text{if domination (X)=CD} \\ \gamma_t(G), & \text{if domination (X)=OD} \end{cases}$$

$G = G_1 \sqcup G_2 \sqcup \ldots \sqcup G_k$

$$\gamma^{\mathcal{X}}(G) = \gamma^{\mathcal{X}}(G_1) + \gamma^{\mathcal{X}}(G) \dots + \gamma^{\mathcal{X}}(G_k)$$
 except when $\mathcal{X} = OSD$.

 \implies enough to consider connected G whenever $X \neq OSD$.

Codes based on location: LD codes...

→ 프 → - 프

Codes based on location: LD codes...

< ≣ >

2

Codes based on location: LD codes...

Let G = (V, E) be a connected graph and of order ≥ 3 .

LD code: $S \subset V$ is a dominating set and a locating set. • $\gamma(G) \leq \gamma^{\text{LD}}(G)$ • $\lfloor \log_2 n \rfloor \leq \gamma^{\text{LD}}(G) \leq n-1$ [3] [3] Slater, 1988.

Codes based on location: LTD codes...

→ Ξ →

2

Codes based on location: LTD codes...

- < ≣ → ---

Codes based on location: LTD codes...

Let G = (V, E) be a connected graph and of order ≥ 3 .

LD code: $S \subset V$ is a total-dominating set and a locating set. • $\gamma_t(G) \leq \gamma^{\text{LTD}}(G)$ • $\lfloor \log_2 n \rfloor \leq \gamma^{\text{LTD}}(G) \leq n-1$ [5] [5] Henning & Rad, 2012.

Bounds on $\gamma^{\text{LD}}(G)$ and $\gamma^{\text{LTD}}(G)$

LD code: $S \subset V$ is a

- dominating set; and
- locating set

(cc

$$\begin{split} \gamma(G) &\leq \gamma^{\text{LD}}(G) \\ \gamma(G) &\leq \frac{n}{2} \quad ([6]) \\ \gamma(G) &\leq \gamma^{\text{LD}}(G) \leq \frac{n}{2} \\ \text{onjecture [7]: for } G \text{ twin-free)} \end{split}$$

[6] Ore, 1962.[7] Garijo, González & Márques, 2014.

LTD code: $S \subset V$ is a

- total-dominating set; and
- locating set

$$\gamma_t(G) \le \gamma^{\text{LTD}}(G)$$

$$\gamma_t(G) \le \frac{2n}{3} \quad ([8])$$

$$\gamma_t(G) \le \gamma^{\text{LTD}}(G) \le \frac{2n}{3}$$

(conjecture [9]: for G twin-free)

イロト イヨト イヨト イヨト

[8] Cockayne, Dawes &Hedetniemi, 1980.[9] Foucaud & Henning, 2016.

Conj: $\gamma^{\text{LD}}(G) \leq \frac{n}{2}$, G isolate- & twin-free, is true for:

• with no 4-cycles (as subgraphs)	
• with independence number $\geq \frac{n}{2}$	Carijo, Conzéloz
• bipartite graph	Garijo, Gonzalez
• with vertex cover number $\leq \frac{n}{2}$	& Marquez, 2014
• line graph	Fourand & Honning 2016
• cubic graph (Conj: even with twins)	Foucaud & Heiming, 2010
• subcubic graph (with deg 1 twin-free)	
$\ncong K_3, K_4, K_{2,3}, K_{3,3}$	C., Lehtila & Hakanen,
• Corollary: cubic with twins	2024+ [writing ongoing]
• split graph	Foucaud, Henning, Löwen-
• co-bipartite	stein & Sasse, 2016
• block graph	C., Foucaud, Parreau
• block graph	& Wagler, 2023

Best general bound [Foucaud, Henning, Löwenstein & Sasse 2016]

For a twin-free and isolate-free graph, $\gamma^{\text{LD}}(G) \leq \frac{2n}{3}$.

A graph whose every 2-connected component is a complete subgraph.

Block graph (altertnative definition)

A graph whose every 2-connected component is a complete subgraph.

Block graph (altertnative definition)

A graph whose every 2-connected component is a complete subgraph.

Block graph (altertnative definition)

A graph whose every 2-connected component is a complete subgraph.

Block graph (altertnative definition)

A graph whose every 2-connected component is a complete subgraph.

Block graph (altertnative definition)

A graph whose every 2-connected component is a complete subgraph.

Block graph (altertnative definition)

A graph whose every 2-connected component is a complete subgraph.

Block graph (altertnative definition)

A graph whose every 2-connected component is a complete subgraph.

Block graph (altertnative definition)

For G a twin-free and isolate-free block graph on n vertices,

$$\gamma^{LD}(G) \le \frac{n}{2}.$$

Proof sketch.

For G a twin-free and isolate-free block graph on n vertices,

$$\gamma^{LD}(G) \le \frac{n}{2}.$$

Proof sketch.

For G a twin-free and isolate-free block graph on n vertices,

$$\gamma^{LD}(G) \le \frac{n}{2}.$$

Proof sketch.

• Partition V into two parts A and B.

Dipayan Chakraborty (3rd Year PhD) Identification Problems in graphs

For G a twin-free and isolate-free block graph on n vertices,

$$\gamma^{LD}(G) \le \frac{n}{2}.$$

Proof sketch.

• Partition V into two parts A and B.

Dipayan Chakraborty (3rd Year PhD) Identification Problems in graphs

For G a twin-free and isolate-free block graph on n vertices,

$$\gamma^{LD}(G) \le \frac{n}{2}.$$

Proof sketch.

For G a twin-free and isolate-free block graph on n vertices,

$$\gamma^{LD}(G) \le \frac{n}{2}.$$

Proof sketch.

For G a twin-free and isolate-free block graph on n vertices,

$$\gamma^{LD}(G) \le \frac{n}{2}.$$

Proof sketch.

For G a twin-free and isolate-free block graph on n vertices,

$$\gamma^{LD}(G) \le \frac{n}{2}.$$

Proof sketch.

For G a twin-free and isolate-free block graph on n vertices,

$$\gamma^{LD}(G) \le \frac{n}{2}.$$

Proof sketch.

For G a twin-free and isolate-free block graph on n vertices,

$$\gamma^{LD}(G) \le \frac{n}{2}.$$

Proof sketch.

For G a twin-free and isolate-free block graph on n vertices,

$$\gamma^{LD}(G) \le \frac{n}{2}.$$

Proof sketch.

For G a twin-free and isolate-free block graph on n vertices,

$$\gamma^{LD}(G) \le \frac{n}{2}.$$

Proof sketch.

For G a twin-free and isolate-free block graph on n vertices,

$$\gamma^{LD}(G) \le \frac{n}{2}.$$

Proof sketch.

- Partition V into two parts A and B.
- Both A and B are LD codes of G.

For G a twin-free and isolate-free block graph on n vertices,

$$\gamma^{LD}(G) \le \frac{n}{2}.$$

Proof sketch.

- Partition V into two parts A and B.
- Both A and B are LD codes of G.
- Either one of |A| or $|B| \leq \frac{1}{2}n$.

Conj: $\gamma^{\text{LTD}}(G) \leq \frac{2n}{3}$, G isolate- & twin-free, is true for:

• with no 4-cycles (as subgraphs)			
• line graph	Foucaud & Henning, 2016		
• with $\gamma^{\text{LD}}(G) \leq \frac{n}{2}$ and $\delta(G) \geq 26$			
• claw-free cubic graph $\not\cong K_4$			
(It was shown $\gamma^{\text{LTD}}(G) \leq \frac{n}{2}$.	Henning & Löwenstein,		
Conj: $\gamma^{\text{LTD}}(G) \leq \frac{n}{2}$ for G cubic, $n \geq 8$)	2012		
• split graph $(\gamma^{\text{LTD}}(G) < \frac{2n}{3})$			
• co-bipartite graph $(\gamma^{\text{LTD}}(G) \leq \frac{n}{2})$			
• block graph, $n \ge 4$	C., Foucaud, Hakanen,		
• subcubic graph $\not\cong K_1, K_2, K_4, K_{1,3}$	Henning & Wagler, 2024+		
\bullet outerplanar graph			

Best general bound [Foucaud & Henning, 2016]

For a twin-free and isolate-free graph, $\gamma^{\text{LTD}}(G) \leq \frac{3n}{4}$.

For G a twin-free and isolate-free block graph on n vertices,

$$\gamma^{\mathrm{LTD}}(G) \le \frac{2n}{3}.$$

Proof sketch (by induction on n).

For G a twin-free and isolate-free block graph on n vertices,

$$\gamma^{\mathrm{LTD}}(G) \leq \frac{2n}{3}.$$

Proof sketch (by induction on n).

• x and y are (closed) twins in G'.

For G a twin-free and isolate-free block graph on n vertices,

$$\gamma^{\mathrm{LTD}}(G) \leq \frac{2n}{3}.$$

Proof sketch (by induction on n).

x and y are (closed) twins in G'.
y and x" are (open) twins in G".

For G a twin-free and isolate-free block graph on n vertices,

$$\gamma^{\text{LTD}}(G) \le \frac{2n}{3}.$$

Proof sketch (by induction on n).

- x and y are (closed) twins in G'.
- y and x'' are (open) twins in G''.
- No further twins.

For G a connected subcubic graph on n vertices and $\not\cong K_1, K_2, K_4, K_{1,3}$,

$$\gamma^{\text{LTD}}(G) \le \frac{2n}{3}.$$

Proof sketch

• Proof by contradiction: assume G to be subcubic graph of smallest order such that $\gamma^{LTD}(G) > \frac{2}{3}n$.

For G a connected subcubic graph on n vertices and $\cong K_1, K_2, K_4, K_{1,3}$,

$$\gamma^{\text{LTD}}(G) \le \frac{2n}{3}.$$

Proof sketch

- Proof by contradiction: assume G to be subcubic graph of smallest order such that $\gamma^{LTD}(G) > \frac{2}{3}n$.
- $\delta(G) \ge 2.$
 - There is no (1, 3, 1)-sequence.
 - There is no (1, 2, 2)-sequence.
 - There is no (1, 2, 3, 1)-sequence.
 - There is no (1, 2, 3, 2, 1)-sequence.
 - There is no (1, 2, 3)-sequence.
 - There is no (1, 2)-sequence.
 - There is no (1, 3, 2)-sequence.
 - There is no (1, 3, 3, 1)-sequence.

For G a connected subcubic graph on n vertices and $\not\cong K_1, K_2, K_4, K_{1,3}$,

$$\gamma^{\mathrm{LTD}}(G) \le \frac{2n}{3}.$$

- G is triangle-free.
- G is cubic.
 - There is no (2, 2, 2)-sequence.
 - There is no (2, 3, 2)-sequence.
 - There is no (2, 2, 3)-sequence.
 - There is no (2, 2)-sequence.
 - There is no (2, 3, 3)-sequence.

•
$$G' = G - (3, 3, 3)$$
-sequence.

•
$$G' \not\cong K_1, K_2, K_4, K_{1,3}.$$

For G a twin-free and isolate-free outerplanar graph on n vertices,

$$\gamma^{\text{LTD}}(G) \le \frac{2n}{3}.$$

For G a twin-free and isolate-free outerplanar graph on n vertices,

$$\gamma^{\mathrm{LTD}}(G) \le \frac{2n}{3}.$$

For G a twin-free and isolate-free outerplanar graph on n vertices,

$$\gamma^{\mathrm{LTD}}(G) \leq \frac{2n}{3}.$$

Proof sketch

- Prove the conjectures in general!
- Improve the existing best bounds approximating the conjectured bounds.
- Characterize cubic/ block / split / etc. graphs whose LD-LTD-numbers attain the conjectured bounds.

Thank you.

Dipayan Chakraborty (3rd Year PhD) Identification Problems in graphs

< ≣⇒

< 🗗 ►