Identification Problems in Graphs

Dipayan Chakraborty (3rd Year PhD)

Thesis director: Annegret WAGLER, Co-supervisor: Florent FOUCAUD, Mentor: Michael HENNING

Université Clermont-Auvergne, CNRS, Mines de Saint-Étienne, Clermont-Auvergne-INP, LIMOS, 63000 Clermont-Ferrand, France

University of Johannesburg, Department of Mathematics and Applied Mathematics, Auckland Park, 2006, South Africa
dipayan.chakraborty@uca.fr

Cnrs

(1) Introduction to Identification problems

- Motivation
- Definitions
- Properties
(2) LD and LTD codes
- Bounds and existing research
- Recent developments

Identification problems in graphs

Identification problems in graphs

Locating-dominating (LD) code - A practical example

- $1 \longleftrightarrow\{2\} \quad=N(1) \cap S$
- $3 \longleftrightarrow\{2,5,7\}=N(3) \cap S$
- $4 \longleftrightarrow\{2,5\}=N(4) \cap S$
- $6 \longleftrightarrow\{5\} \quad=N(6) \cap S$
- $8 \longleftrightarrow\{7\}=N(8) \cap S$
- $9 \longleftrightarrow\{7,10\}=N(9) \cap S$

Definitions (Neighbourhoods)

Let $G=(V, E)$ be a graph...

Neighbourhoods

$$
\text { open: } N(v)=\{u \in V: u v \in E\} . \quad \| \quad \text { closed }: N[v]=N(v) \cup\{v\} .
$$

Twins

$$
u, v \in V \text { are called }\left\{\begin{array}{l}
\text { open twins } \\
\text { closed twins }
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{l}
N(u)=N(v) \\
N[u]=N[v]
\end{array}\right\} .
$$

Diamond

Definitions (Domination)

Let $G=(V, E)$ be a graph...

Dominating set
 [property: closed domination]

$S \subset V$ such that $N[v] \cap S \neq \emptyset$ for all $v \in V$.
A dominating set always exists.

Open/total dominating set
[property: open domination]
$S \subset V$ such that $N(v) \cap S \neq \emptyset$ for all $v \in V$.
An open dominating set exists $\Longleftrightarrow G$ is isolate-free.

Definitions (Separation)

Let $G=(V, E)$ be a graph...
Locating set
[property: location]
$S \subset V$ such that $N(u) \cap S \neq N(v) \cap S$ for all $u, v \in V \backslash S$.

Open separating set

[property: open separation]
$S \subset V$ such that $N(u) \cap S \neq N(v) \cap S$ for all distinct $u, v \in V$.
Open separating set exists $\Longleftrightarrow G$ is open-twin free.

Closed separating set
[property: closed separation]
$S \subset V$ such that $N[u] \cap S \neq N[v] \cap S$ for all distinct $u, v \in V$.
Closed separating set exists $\Longleftrightarrow G$ is closed-twin free.

Definitions (Codes)

Let $G=(V, E)$ be a graph...
Locating-dominating (LD) code [3]
$S \subset V$ such that S has the following properties.

- domination : closed domination
- separation : location

LD code always exists.
[3] Slater, 1988

Definitions (Codes)

Let $G=(V, E)$ be a graph...

Locating-dominating (LD) code [3]

$S \subset V$ such that S has the following properties.

- domination : closed domination
- separation : location

LD code always exists.

X code

$S \subset V$ such that S has the following properties.

- domination (X) : closed / open domination
- separation (X) : location / closed / open separation
[3] Slater, 1988

Definitions (Codes)

Let $G=(V, E)$ be a graph...
Locating total-dominating (LTD) code [4]
$\mathrm{X}=\mathrm{LTD}$
$S \subset V$ such that S has the following properties.

- domination : open domination
- separation : location

LTD code exists $\Longleftrightarrow G$ is isolate-free.
[4] Haynes, Henning \& Howard, 2006.

X codes studied in literature.

Code name	\mathbf{X}	dom(X)	$\mathbf{s e p}(\mathbf{X})$	$\gamma^{\mathrm{X}}(\mathbf{G})$
Identifying	ID	CD	CS	$\gamma^{\mathrm{ID}}(G)$
Open-Separating Dominating	OSD	CD	OS	$\gamma^{\mathrm{OSD}}(G)$
Locating- Dominating	LD	CD	L	$\gamma^{\mathrm{LD}}(G)$
Differentiating Total-Dominating	DTD	OD	CS	$\gamma^{\mathrm{DTD}}(G)$
Open-Locating Dominating	OLD	OD	OS	$\gamma^{\mathrm{OLD}}(G)$
Locating Total-Dominating	LTD	OD	L	$\gamma^{\mathrm{LTD}}(G)$

CD : closed domination
OD : open domination
CS : closed separation
OS : open separation
L : location

Definitions

Let $G=(V, E)$ be a graph...

$$
\begin{aligned}
& \text { X-number } \\
& \gamma^{\mathrm{X}}(G)=\min \{|S|: S \text { is an X-code of } G\} .
\end{aligned}
$$

Domination number

$\gamma(G)=\min \{|S|: S$ is a dominating set of $G\}$.

> Total-domination number $\gamma_{t}(G)=\min \{|S|: S$ is a total-dominating of $G\}$.

Basic properties of X codes

Let $G=(V, E)$ be a graph...

A comparison

$$
\gamma^{\mathrm{X}}(G) \geq \begin{cases}\gamma(G), & \text { if domination }(\mathrm{X})=\mathrm{CD} \\ \gamma_{t}(G), & \text { if domination }(\mathrm{X})=\mathrm{OD}\end{cases}
$$

$G=G_{1} \sqcup G_{2} \sqcup \ldots \sqcup G_{k}$

$$
\gamma^{\mathrm{X}}(G)=\gamma^{\mathrm{X}}\left(G_{1}\right)+\gamma^{\mathrm{X}}(G) \ldots+\gamma^{\mathrm{X}}\left(G_{k}\right) \text { except when } \mathrm{X}=\mathrm{OSD}
$$

\Longrightarrow enough to consider connected G whenever $\mathrm{X} \neq$ OSD.

Codes based on location: LD codes...

Codes based on location: LD codes...

$\gamma^{\mathrm{LD}}(G)=n-1, \gamma(G)=1$
$n=10, \gamma^{\mathrm{LD}}(G)=3=\left\lfloor\log _{2} 10\right\rfloor$

$$
\gamma^{L D}\left(P_{n}\right)=\left\lceil\frac{2}{5} n\right\rceil
$$

Codes based on location: LD codes...

$n=10, \gamma^{\mathrm{LD}}(G)=3=\left\lfloor\log _{2} 10\right\rfloor$.

Let $G=(V, E)$ be a connected graph and of order ≥ 3.
LD code: $S \subset V$ is a dominating set and a locating set.

- $\gamma(G) \leq \gamma^{\mathrm{LD}}(G)$
- $\left\lfloor\log _{2} n\right\rfloor \leq \gamma^{\mathrm{LD}}(G) \leq n-1 \quad[3]$
[3] Slater, 1988.

Codes based on location: LTD codes...

Codes based on location: LTD codes...

$$
\gamma^{\mathrm{LTD}}(G)=n-1, \gamma(G)=1
$$

$$
n=10, \gamma^{\mathrm{LTD}}(G)=3=\left\lfloor\log _{2} 10\right\rfloor
$$

$$
\gamma^{\mathrm{LTD}}\left(P_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor+\left\lceil\frac{n}{4}\right\rceil-\left\lfloor\frac{n}{4}\right\rfloor
$$

Codes based on location: LTD codes...

$$
\gamma^{\mathrm{LTD}}(G)=n-1, \gamma(G)=1 .
$$

$$
n=10, \gamma^{\mathrm{LTD}}(G)=3=\left\lfloor\log _{2} 10\right\rfloor .
$$

Let $G=(V, E)$ be a connected graph and of order ≥ 3.
LD code: $S \subset V$ is a total-dominating set and a locating set.

- $\gamma_{t}(G) \leq \gamma^{\mathrm{LTD}}(G)$
- $\left\lfloor\log _{2} n\right\rfloor \leq \gamma^{\mathrm{LTD}}(G) \leq n-1 \quad[5]$
[5] Henning \& Rad, 2012.

Bounds on $\gamma^{\mathrm{LD}}(G)$ and $\gamma^{\mathrm{LTD}}(G)$

LD code: $S \subset V$ is a

- dominating set; and
- locating set

$$
\begin{aligned}
& \gamma(G) \leq \gamma^{\mathrm{LD}}(G) \\
& \gamma(G) \leq \frac{n}{2}([6]) \\
& \gamma(G) \leq \gamma^{\mathrm{LD}}(G) \leq \frac{n}{2}
\end{aligned}
$$

(conjecture [7]: for G twin-free)
[6] Ore, 1962.
[7] Garijo, González \& Márques, 2014.

LTD code: $S \subset V$ is a

- total-dominating set; and
- locating set

$$
\begin{aligned}
& \gamma_{t}(G) \leq \gamma^{\mathrm{LTD}}(G) \\
& \gamma_{t}(G) \leq \frac{2 n}{3}([8]) \\
& \gamma_{t}(G) \leq \gamma^{\mathrm{LTD}}(G) \leq \frac{2 n}{3}
\end{aligned}
$$

(conjecture [9]: for G twin-free)
[8] Cockayne, Dawes \&
Hedetniemi, 1980.
[9] Foucaud \& Henning, 2016.

Conj: $\gamma^{\mathrm{LD}}(G) \leq \frac{n}{2}, G$ isolate- \& twin-free, is true for:

- with no 4-cycles (as subgraphs)
- with independence number $\geq \frac{n}{2}$
- bipartite graph
- with vertex cover number $\leq \frac{n}{2}$
- line graph
- cubic graph (Conj: even with twins)

Garijo, González
\& Márquez, 2014

Foucaud \& Henning, 2016

- subcubic graph (with deg 1 twin-free) $\not \neq K_{3}, K_{4}, K_{2,3}, K_{3,3}$
- Corollary: cubic with twins
- split graph
- co-bipartite
- block graph
C., Lehtila \& Hakanen, 2024+ [writing ongoing] Foucaud, Henning, Löwenstein \& Sasse, 2016
C., Foucaud, Parreau
\& Wagler, 2023

Best general bound [Foucaud, Henning, Löwenstein \& Sasse 2016]

For a twin-free and isolate-free graph, $\gamma^{\mathrm{LD}}(G) \leq \frac{2 n}{3}$.

Block graph

A graph whose every 2-connected component is a complete subgraph.

Block graph (altertnative definition)

A diamond-free chordal graph.

Block graph

A graph whose every 2-connected component is a complete subgraph.

Block graph (altertnative definition)

A diamond-free chordal graph.

Block graph

A graph whose every 2-connected component is a complete subgraph.

Block graph (altertnative definition)

A diamond-free chordal graph.

Block graph

A graph whose every 2-connected component is a complete subgraph.

Block graph (altertnative definition)

A diamond-free chordal graph.

Block graph

A graph whose every 2-connected component is a complete subgraph.

Block graph (altertnative definition)

A diamond-free chordal graph.

Block graph

A graph whose every 2-connected component is a complete subgraph.

Block graph (altertnative definition)

A diamond-free chordal graph.

Block graph

A graph whose every 2-connected component is a complete subgraph.

Block graph (altertnative definition)

A diamond-free chordal graph.

Block graph

A graph whose every 2-connected component is a complete subgraph.

Block graph (altertnative definition)

A diamond-free chordal graph.

Theorem (C., Foucaud, Parreau \& Wagler, 2023)
For G a twin-free and isolate-free block graph on n vertices,

$$
\gamma^{L D}(G) \leq \frac{n}{2}
$$

Proof sketch.

Theorem (C., Foucaud, Parreau \& Wagler, 2023)
For G a twin-free and isolate-free block graph on n vertices,

$$
\gamma^{L D}(G) \leq \frac{n}{2}
$$

Proof sketch.

- Partition V into two parts A and B.

Theorem (C., Foucaud, Parreau \& Wagler, 2023)

For G a twin-free and isolate-free block graph on n vertices,

$$
\gamma^{L D}(G) \leq \frac{n}{2}
$$

Proof sketch.

- Partition V into two parts A and B.

Theorem (C., Foucaud, Parreau \& Wagler, 2023)

For G a twin-free and isolate-free block graph on n vertices,

$$
\gamma^{L D}(G) \leq \frac{n}{2}
$$

Proof sketch.

- Partition V into two parts A and B.

Theorem (C., Foucaud, Parreau \& Wagler, 2023)

For G a twin-free and isolate-free block graph on n vertices,

$$
\gamma^{L D}(G) \leq \frac{n}{2}
$$

Proof sketch.

- Partition V into two parts A and B.

Theorem (C., Foucaud, Parreau \& Wagler, 2023)

For G a twin-free and isolate-free block graph on n vertices,

$$
\gamma^{L D}(G) \leq \frac{n}{2}
$$

Proof sketch.

- Partition V into two parts A and B.

Theorem (C., Foucaud, Parreau \& Wagler, 2023)

For G a twin-free and isolate-free block graph on n vertices,

$$
\gamma^{L D}(G) \leq \frac{n}{2}
$$

Proof sketch.

- Partition V into two parts A and B.

Theorem (C., Foucaud, Parreau \& Wagler, 2023)

For G a twin-free and isolate-free block graph on n vertices,

$$
\gamma^{L D}(G) \leq \frac{n}{2}
$$

Proof sketch.

- Partition V into two parts A and B.

Theorem (C., Foucaud, Parreau \& Wagler, 2023)

For G a twin-free and isolate-free block graph on n vertices,

$$
\gamma^{L D}(G) \leq \frac{n}{2}
$$

Proof sketch.

- Partition V into two parts A and B.

Theorem (C., Foucaud, Parreau \& Wagler, 2023)

For G a twin-free and isolate-free block graph on n vertices,

$$
\gamma^{L D}(G) \leq \frac{n}{2}
$$

Proof sketch.

- Partition V into two parts A and B.

Theorem (C., Foucaud, Parreau \& Wagler, 2023)

For G a twin-free and isolate-free block graph on n vertices,

$$
\gamma^{L D}(G) \leq \frac{n}{2}
$$

Proof sketch.

- Partition V into two parts A and B.

Theorem (C., Foucaud, Parreau \& Wagler, 2023)

For G a twin-free and isolate-free block graph on n vertices,

$$
\gamma^{L D}(G) \leq \frac{n}{2}
$$

Proof sketch.

- Partition V into two parts A and B.

Theorem (C., Foucaud, Parreau \& Wagler, 2023)

For G a twin-free and isolate-free block graph on n vertices,

$$
\gamma^{L D}(G) \leq \frac{n}{2}
$$

Proof sketch.

- Partition V into two parts A and B.
- Both A and B are LD codes of G.

Theorem (C., Foucaud, Parreau \& Wagler, 2023)

For G a twin-free and isolate-free block graph on n vertices,

$$
\gamma^{L D}(G) \leq \frac{n}{2}
$$

Proof sketch.

- Partition V into two parts A and B.
- Both A and B are LD codes of G.
- Either one of $|A|$ or $|B| \leq \frac{1}{2} n$.

Conj: $\gamma^{\mathrm{LTD}}(G) \leq \frac{2 n}{3}, G$ isolate- \& twin-free, is true for:

- with no 4-cycles (as subgraphs)
- line graph
- with $\gamma^{\mathrm{LD}}(G) \leq \frac{n}{2}$ and $\delta(G) \geq 26$
- claw-free cubic graph $\not \approx K_{4}$
(It was shown $\gamma^{\mathrm{LTD}}(G) \leq \frac{n}{2}$.
Conj: $\gamma^{\mathrm{LTD}}(G) \leq \frac{n}{2}$ for G cubic, $n \geq 8$)
Henning \& Löwenstein, 2012
- split graph $\left(\gamma^{\mathrm{LTD}}(G)<\frac{2 n}{3}\right)$
- co-bipartite graph $\left(\gamma^{\mathrm{LTD}}(G) \leq \frac{n}{2}\right)$
- block graph, $n \geq 4$
- subcubic graph $\not \approx K_{1}, K_{2}, K_{4}, K_{1,3}$
- outerplanar graph

Foucaud \& Henning, 2016

For G a twin-free and isolate-free block graph on n vertices,

$$
\gamma^{\mathrm{LTD}}(G) \leq \frac{2 n}{3}
$$

Proof sketch (by induction on n).

Theorem (C.,Foucaud, Hakanen, Henning \& Wagler, 2024+)

For G a twin-free and isolate-free block graph on n vertices,

$$
\gamma^{\mathrm{LTD}}(G) \leq \frac{2 n}{3}
$$

Proof sketch (by induction on n).

- x and y are (closed) twins in G^{\prime}.

Theorem (C.,Foucaud, Hakanen, Henning \& Wagler, 2024+)

For G a twin-free and isolate-free block graph on n vertices,

$$
\gamma^{\mathrm{LTD}}(G) \leq \frac{2 n}{3}
$$

Proof sketch (by induction on n).

- x and y are (closed) twins in G^{\prime}.
- y and $x^{\prime \prime}$ are (open) twins in $G^{\prime \prime}$.

Theorem (C.,Foucaud, Hakanen, Henning \& Wagler, 2024+)

For G a twin-free and isolate-free block graph on n vertices,

$$
\gamma^{\mathrm{LTD}}(G) \leq \frac{2 n}{3}
$$

Proof sketch (by induction on n).

- x and y are (closed) twins in G^{\prime}.
- y and $x^{\prime \prime}$ are (open) twins in $G^{\prime \prime}$.
- No further twins.

Theorem (C.,Foucaud, Hakanen, Henning \& Wagler, 2024+)

For G a connected subcubic graph on n vertices and $\not \neq K_{1}, K_{2}, K_{4}, K_{1,3}$,

$$
\gamma^{\mathrm{LTD}}(G) \leq \frac{2 n}{3}
$$

Proof sketch

- Proof by contradiction: assume G to be subcubic graph of smallest order such that $\gamma^{L T D}(G)>\frac{2}{3} n$.

Theorem (C.,Foucaud, Hakanen, Henning \& Wagler, 2024+)

For G a connected subcubic graph on n vertices and $\not \neq K_{1}, K_{2}, K_{4}, K_{1,3}$,

$$
\gamma^{\mathrm{LTD}}(G) \leq \frac{2 n}{3}
$$

Proof sketch

- Proof by contradiction: assume G to be subcubic graph of smallest order such that $\gamma^{L T D}(G)>\frac{2}{3} n$.
- $\delta(G) \geq 2$.
- There is no $(1,3,1)$-sequence.
- There is no $(1,2,2)$-sequence.
- There is no $(1,2,3,1)$-sequence.
- There is no $(1,2,3,2,1)$-sequence.
- There is no $(1,2,3)$-sequence.
- There is no $(1,2)$-sequence.
- There is no $(1,3,2)$-sequence.
- There is no ($1,3,3,1$)-sequence.

Theorem (C.,Foucaud, Hakanen, Henning \& Wagler, 2024+)

For G a connected subcubic graph on n vertices and $\not \neq K_{1}, K_{2}, K_{4}, K_{1,3}$,

$$
\gamma^{\mathrm{LTD}}(G) \leq \frac{2 n}{3}
$$

Proof sketch

- G is triangle-free.
- G is cubic.
- There is no $(2,2,2)$-sequence.
- There is no $(2,3,2)$-sequence.
- There is no $(2,2,3)$-sequence.
- There is no $(2,2)$-sequence.
- There is no $(2,3,3)$-sequence.
- $G^{\prime}=G-(3,3,3)$-sequence.
- $G^{\prime} \neq K_{1}, K_{2}, K_{4}, K_{1,3}$.

Theorem (C.,Foucaud, Hakanen, Henning \& Wagler, 2024+)

For G a twin-free and isolate-free outerplanar graph on n vertices,

$$
\gamma^{\mathrm{LTD}}(G) \leq \frac{2 n}{3}
$$

Proof sketch

Theorem (C.,Foucaud, Hakanen, Henning \& Wagler, 2024+)

For G a twin-free and isolate-free outerplanar graph on n vertices,

$$
\gamma^{\mathrm{LTD}}(G) \leq \frac{2 n}{3}
$$

Proof sketch

Theorem (C.,Foucaud, Hakanen, Henning \& Wagler, 2024+)
For G a twin-free and isolate-free outerplanar graph on n vertices,

$$
\gamma^{\mathrm{LTD}}(G) \leq \frac{2 n}{3}
$$

Proof sketch

Possible future research ideas...

- Prove the conjectures in general!
- Improve the existing best bounds approximating the conjectured bounds.
- Characterize cubic/ block / split / etc. graphs whose LD-LTD-numbers attain the conjectured bounds.

Thank you.

