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Identification problems in graphs

4+ {2,3}
5+ {2,3,6}
8 «+— {7}

9 +— {7,10}
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Locating-dominating (LD) code — A practical example

{2.3} {7}
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Locating-dominating (LD) code — A practical example

{2.5} {7}
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Locating-dominating (LD) code

{2,5}
S = {blue vertices}

— A practical example

1+-1{2} =N1NS
3+ {2,5,7}=N(3)N S
4+ {2,5) =NM4)NS
6 {5} =N(®6)NS
8§« {7t =N(@BNS
9« {7,101 =N(©O)NS
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Locating-dominating (LD) code

{2,5} {7}
S = {blue vertices}

1+— {2} =N
3+ {2,5,7}=N
4+—{2,5} =N
6+ {5} =N
8+— {7} =N
9« {7,10}

S has two properties:

1. Domination: “Well spread-out”

2. Separation (location):

N(u)nNS#N(@w)NS, Yu,v ¢ S

— A practical example
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Definitions (Neighbourhoods)

Let G = (V, E) be a graph...

Neighbourhoods
open: N(v)={ueV:uveFE}. || closed: Nv]= N(v)U{v}.

open twins N(u) = N(v)
u,v € V are called = .

closed twins

Diamond
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Definitions (Domination)

Let G = (V, E) be a graph...

Dominating set [property: closed domination)
S C V such that N[vJNS #0( for allv e V.

A dominating set always exists.

Open/total dominating set [property: open domination]
S C V such that N(v) NS # 0 for all v e V.

An open dominating set exists <= G is isolate-free.
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Definitions (Separation)

Let G = (V, E) be a graph...

Locating set [property: location]
S C V such that N(u) NS # N(v)N S for all u,v € V'\ S.

Open separating set [property: open separation|
S C V such that N(u) NS # N(v)N S for all distinct u,v € V.

Open separating set exists <= G is open-twin free.

Closed separating set [property: closed separation)]
S C V such that N[u]N S # N[v] NS for all distinct u,v € V.

Closed separating set exists <= G is closed-twin free.
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Definitions (Codes)

Let G = (V, E) be a graph...

Locating-dominating (LD) code [3]

S C V such that S has the following properties.

e domination : closed domination
e separation : location

LD code always exists.

(3] Slater, 1988
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Definitions (Codes)

Let G = (V, E) be a graph...

Locating-dominating (LD) code [3]

S C V such that S has the following properties.

e domination : closed domination
e separation : location

LD code always exists.

S C V such that S has the following properties.

e domination (X) : closed / open domination
e separation (X) : location / closed / open separation

(3] Slater, 1988
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Definitions (Codes)

Let G = (V, E) be a graph...

Locating total-dominating (LTD) code [4]

S C V such that S has the following properties.

e domination : open domination
e gseparation : location

LTD code exists < @ is isolate-free.

[4] Haynes, Henning & Howard, 2006.
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X codes studied in literature.

Code name X [ dom(X)]sep(X) | 7X(G)

Identifying ID CD CS 7P(G)
Open-Separating Dominating | OSD CD (O] yOSP(@)

Locating- Dominating LD CD L P (@)

Differentiating

Total-Dominating DID oD €S 7PHR(G)
Open-Locating Dominating | OLD OD OS O (@)
Locating Total-Dominating | LTD OD L AP (G)

CD closed domination
OD open domination
CS closed separation
OS open separation
L : location
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Definitions

Let G = (V, E) be a graph...

7X(G) = min{|S| : S is an X-code of G}.

Domination number
7(G) = min{|S| : S is a dominating set of G}.

Total-domination number

7(G) = min{|S| : S is a total-dominating of G}.
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Basic properties of X codes

Let G = (V, E) be a graph...

X(G) > V(G), if domination (X):CD
| %(G), if domination (X)=0D

o

YX(G) = ¥X(G1) +vX(G) ... + ¥ (Gy) except when X = OSD.

— enough to consider connected G whenever X # OSD.
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Codes based on location: LD codes...

Y@ =n—-1,~(G) = 1. n =10, v*° (@) = 3 = |log, 10].
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Y@ =n—-1,~(G) = 1. n =10, v*°(G) = 3 = |log, 10].
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Codes based on location: LD codes...

FP(@E) =n—1, (@) =1. n =10, v*P(G) = 3 = |log, 10].

Let G = (V, E) be a connected graph and of order > 3.

LD code: S C V is a dominating set and a locating set.

e Y(G) <AMP(G)
o [logyn] <AMP(G)<n—1 [3]

[3] Slater, 1988.
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Codes based on location: L'TD codes...

YTP(@)=n-1,~4G) =1 n =10, v*™(G) = 3 = |log, 10].

Dipayan Chakraborty (3rd Year PhD) Identification Problems in



Codes based on location: L'TD codes.

O

G)=n-1,~(G n =10, v**(G) = 3 = |log, 10].

-O—0—0—0C—-—0 O—0O—0—0——0-

YRR = (3] + 131 - 14
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Codes based on location: L'TD codes...

AHP(@) =n— 1, v(G) = 1. n =10, v*TP(G) = 3 = |log, 10].

Let G = (V, E) be a connected graph and of order > 3.

LD code: S C V is a total-dominating set and a locating set.

e 1(G) <AMP(G)
o [logyn] <AMP(G) <n—1 [5]

[5] Henning & Rad, 2012.
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Bounds on 4*P(G) and yP(G)

LD code: S CVisa

e dominating set; and
e locating set

san(€)
1G) < 5 (6)

(@) < %
(conjecture [7]: for G twin-free)

=
Qa
N

[6] Ore, 1962.
[7] Garijo, Gonzélez & Marques,
2014.

LTD code: S C V is a

e total-dominating set; and
e locating set

#G) < 2 (8)
w6 <M6) < 2

(conjecture [9]: for G twin-free)

[8] Cockayne, Dawes &
Hedetniemi, 1980.

[9] Foucaud & Henning, 2016.
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D(@) < 2, G isolate- & twin-free, is true for:

with no 4-cycles (as subgraphs)
with independence number > &
bipartite graph

n

Garijo, Gonzélez
& Méarquez, 2014

line graph
cubic graph (Conj: even with twins)

Foucaud & Henning, 2016

[ ]
[ ]
[ ]
e with vertex cover number < &
[ ]
[ ]
[ ]

subcubic graph (with deg 1 twin-free)
% K3, K4, Ky3,K33
Corollary: cubic with twins

C., Lehtila & Hakanen,
2024+ [writing ongoing]

e split graph
e co-bipartite

Foucaud, Henning, Lowen-
stein & Sasse, 2016

e block graph

C., Foucaud, Parreau
& Wagler, 2023

Best general bound [Foucaud, Henning,

Lowenstein & Sasse 2016]

For a twin-free and isolate-free graph, v

b)) <2,

Dipayan Chakraborty (3rd Year PhD)
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Block graph

A graph whose every 2-connected component is a complete subgraph.

Block graph (altertnative definition)

A diamond-free chordal graph.
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Block graph

A graph whose every 2-connected component is a complete subgraph.

Block graph (altertnative definition)

A diamond-free chordal graph.

NON-LEAF
BLOCK

articulation vertices
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Block graph

A graph whose every 2-connected component is a complete subgraph.

Block graph (altertnative definition)

A diamond-free chordal graph.
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Block graph

A graph whose every 2-connected component is a complete subgraph.

Block graph (altertnative definition)

A diamond-free chordal graph.

non-articulation
vertices

|

articulation vertices
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Theorem (C., Foucaud, Parreau & Wagler, 2023)

For G a twin-free and isolate-free block graph on n vertices,
n

5.

Proof sketch.

(@) <
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Theorem (C., Foucaud, Parreau & Wagler, 2023)

For G a twin-free and isolate-free block graph on n vertices,
n

5.

Proof sketch.

(@) <

e Partition V into two parts A and B.
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n

5.
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Theorem (C., Foucaud, Parreau & Wagler, 2023)

For G a twin-free and isolate-free block graph on n vertices,
n

5.

Proof sketch.

(@) <

e Partition V into two parts A and B. Ciemeeme <)
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Theorem (C., Foucaud, Parreau & Wagler, 2023)

For G a twin-free and isolate-free block graph on n vertices,

n

LD n

Proof sketch.

e Partition V into two parts A and B.

[ B I R —— L |

. .

’ 1 .~

. 1 .
’ 1

- -

l__j""l"'j__)
S 1 .
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Theorem (C., Foucaud, Parreau & Wagler, 2023)

For G a twin-free and isolate-free block graph on n vertices,

n

LD n

Proof sketch.

--.‘:)

e Partition V into two parts A and B.

[ B I R —— L |

. .

’ 1 .~

. 1 .
’ 1

- -

l__j""l"'j__)
S 1 .
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Theorem (C., Foucaud, Parreau & Wagler, 2023)

For G a twin-free and isolate-free block graph on n vertices,

n

LD n

Proof sketch.

--.‘:)

e Partition V into two parts A and B.
e Both A and B are LD codes of G.

[ B I R —— L |

. .

’ 1 .~

. 1 .
’ 1

- -

l__j""l"'j__)
S 1 .
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Theorem (C., Foucaud, Parreau & Wagler, 2023)

For G a twin-free and isolate-free block graph on n vertices,

n

LD n

Proof sketch.

--.‘:)

e Partition V into two parts A and B.
e Both A and B are LD codes of G.
o Either one of [A] or |B| < 3n.

Mmoo m =

’ A
1 ~
’ -~
-
- -
l__j""l"'j__)
S 1 .
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(G isolate- & twin-free, is true for:

e with no 4-cycles (as subgraphs)
e line graph
e with v'P(G) < 2 and 6(G) > 26

Foucaud & Henning, 2016

e claw-free cubic graph 2% Ky
(It was shown v1TP(G) < 2.
Conj: v"1P(G) < % for G cubic, n > 8)

Henning & Lowenstein,
2012

e split graph (/TP (G) < 2)

e co-bipartite graph (y*TP(G) < %)
e block graph, n >4

e subcubic graph 2 Ky, Ko, K4, K1 3
e outerplanar graph

C., Foucaud, Hakanen,
Henning & Wagler, 2024+

Best general bound [Foucaud & Henning, 2016]

For a twin-free and isolate-free graph, ¥*TP(G) < 3.
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Theorem (C.,Foucaud, Hakanen, Henning & Wagler, 2024+)

For G a twin-free and isolate-free block graph on n wvertices,

,YLTD (G) <

Proof sketch (by induction on n).
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Theorem (C.,Foucaud, Hakanen, Henning & Wagler, 2024+)

For G a twin-free and isolate-free block graph on n wvertices,

,YLTD (G) <

Proof sketch (by induction on n).

e z and y are (closed) twins in G'.
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Theorem (C.,Foucaud, Hakanen, Henning & Wagler, 2024+)

For G a twin-free and isolate-free block graph on n vertices,

,YLTD (G) <

Proof sketch (by induction on n).

e z and y are (closed) twins in G'.
e y and 2 are (open) twins in G”.
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Theorem (C.,Foucaud, Hakanen, Henning & Wagler, 2024+)

For G a twin-free and isolate-free block graph on n wvertices,

,YLTD (G) <

Proof sketch (by induction on n).

e z and y are (closed) twins in G'.
e y and 2 are (open) twins in G”.
e No further twins.
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Theorem (C.,Foucaud, Hakanen, Henning & Wagler, 2024+)
For G a connected subcubic graph on n vertices and 2 K1, Ko, K4, K1 3,

,YLTD (G) <

@ Proof by contradiction: assume G to be subcubic graph of smallest
order such that v/7P(G) > 2n.
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Theorem (C.,Foucaud, Hakanen, Henning & Wagler, 2024+)

For G a connected subcubic graph on n vertices and 2 K1, Ko, K4, K1 3,

,YLTD (G) <

@ Proof by contradiction: assume G to be subcubic graph of smallest

order such that v/7P(G) > 2n.
e §(G)>2

o There is no (1, 3, 1)-sequence.

o There is no (1,2, 2)-sequence.

o There is no (1,2, 3, 1)-sequence.

o There is no (1,2, 3,2, 1)-sequence.
o There is no (1,2, 3)-sequence.

o There is no (1, 2)-sequence.

o There is no (1,3, 2)-sequence.

o There is no (1, 3,3, 1)-sequence.
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Theorem (C.,Foucaud, Hakanen, Henning & Wagler, 2024+)

For G a connected subcubic graph on n vertices and 2 K1, Ko, K4, K1 3,

,YLTD (G) <

Proof sketch

o G is triangle-free.
o (G is cubic.
o There is no
There is no

(2,2,2)-sequence.
° (2, 3,2)-sequence.
o There is no (2,2, 3)-sequence.
o There is no (2, 2)-sequence.

o There is no (2, 3, 3)-sequence.
o G’ =G — (3,3,3)-sequence.
o G'# Ky, Koy, Ky, K1 3.
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Theorem (C.,Foucaud, Hakanen, Henning & Wagler, 2024+)

For G a twin-free and isolate-free outerplanar graph on n vertices,

,)/LTD (G) S

Proof sketch
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Theorem (C.,Foucaud, Hakanen, Henning & Wagler, 2024+)

For G a twin-free and isolate-free outerplanar graph on n vertices,

,)/LTD (G) S

Proof sketch
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Theorem (C.,Foucaud, Hakanen, Henning & Wagler, 2024+)

For G a twin-free and isolate-free outerplanar graph on n vertices,

,YLTD (G) <

Proof sketch
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Possible future research ideas...

e Prove the conjectures in general!

e Improve the existing best bounds approximating the conjectured
bounds.

e Characterize cubic/ block / split / etc. graphs whose LD-
LTD-numbers attain the conjectured bounds.
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Thank you.
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